Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Crit Care ; 26(1): 18, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-2295688

ABSTRACT

QUESTION: We evaluated whether the time between first respiratory support and intubation of patients receiving invasive mechanical ventilation (IMV) due to COVID-19 was associated with mortality or pulmonary sequelae. MATERIALS AND METHODS: Prospective cohort of critical COVID-19 patients on IMV. Patients were classified as early intubation if they were intubated within the first 48 h from the first respiratory support or delayed intubation if they were intubated later. Surviving patients were evaluated after hospital discharge. RESULTS: We included 205 patients (140 with early IMV and 65 with delayed IMV). The median [p25;p75] age was 63 [56.0; 70.0] years, and 74.1% were male. The survival analysis showed a significant increase in the risk of mortality in the delayed group with an adjusted hazard ratio (HR) of 2.45 (95% CI 1.29-4.65). The continuous predictor time to IMV showed a nonlinear association with the risk of in-hospital mortality. A multivariate mortality model showed that delay of IMV was a factor associated with mortality (HR of 2.40; 95% CI 1.42-4.1). During follow-up, patients in the delayed group showed a worse DLCO (mean difference of - 10.77 (95% CI - 18.40 to - 3.15), with a greater number of affected lobes (+ 1.51 [95% CI 0.89-2.13]) and a greater TSS (+ 4.35 [95% CI 2.41-6.27]) in the chest CT scan. CONCLUSIONS: Among critically ill patients with COVID-19 who required IMV, the delay in intubation from the first respiratory support was associated with an increase in hospital mortality and worse pulmonary sequelae during follow-up.


Subject(s)
COVID-19 , Critical Illness , Aged , Humans , Intubation, Intratracheal , Male , Prospective Studies , Respiration, Artificial , SARS-CoV-2
3.
Arch Bronconeumol ; 59(4): 205-215, 2023 Apr.
Article in English, Spanish | MEDLINE | ID: covidwho-2165080

ABSTRACT

INTRODUCTION: Critical COVID-19 survivors have a high risk of respiratory sequelae. Therefore, we aimed to identify key factors associated with altered lung function and CT scan abnormalities at a follow-up visit in a cohort of critical COVID-19 survivors. METHODS: Multicenter ambispective observational study in 52 Spanish intensive care units. Up to 1327 PCR-confirmed critical COVID-19 patients had sociodemographic, anthropometric, comorbidity and lifestyle characteristics collected at hospital admission; clinical and biological parameters throughout hospital stay; and, lung function and CT scan at a follow-up visit. RESULTS: The median [p25-p75] time from discharge to follow-up was 3.57 [2.77-4.92] months. Median age was 60 [53-67] years, 27.8% women. The mean (SD) percentage of predicted diffusing lung capacity for carbon monoxide (DLCO) at follow-up was 72.02 (18.33)% predicted, with 66% of patients having DLCO<80% and 24% having DLCO<60%. CT scan showed persistent pulmonary infiltrates, fibrotic lesions, and emphysema in 33%, 25% and 6% of patients, respectively. Key variables associated with DLCO<60% were chronic lung disease (CLD) (OR: 1.86 (1.18-2.92)), duration of invasive mechanical ventilation (IMV) (OR: 1.56 (1.37-1.77)), age (OR [per-1-SD] (95%CI): 1.39 (1.18-1.63)), urea (OR: 1.16 (0.97-1.39)) and estimated glomerular filtration rate at ICU admission (OR: 0.88 (0.73-1.06)). Bacterial pneumonia (1.62 (1.11-2.35)) and duration of ventilation (NIMV (1.23 (1.06-1.42), IMV (1.21 (1.01-1.45)) and prone positioning (1.17 (0.98-1.39)) were associated with fibrotic lesions. CONCLUSION: Age and CLD, reflecting patients' baseline vulnerability, and markers of COVID-19 severity, such as duration of IMV and renal failure, were key factors associated with impaired DLCO and CT abnormalities.


Subject(s)
COVID-19 , Pulmonary Emphysema , Humans , Female , Middle Aged , Male , Critical Illness , Follow-Up Studies , COVID-19/complications , Disease Progression , Lung/diagnostic imaging
4.
Front Med (Lausanne) ; 9: 897990, 2022.
Article in English | MEDLINE | ID: covidwho-2089851

ABSTRACT

The long-term clinical management and evolution of a cohort of critical COVID-19 survivors have not been described in detail. We report a prospective observational study of COVID-19 patients admitted to the ICU between March and August 2020. The follow-up in a post-COVID consultation comprised symptoms, pulmonary function tests, the 6-minute walking test (6MWT), and chest computed tomography (CT). Additionally, questionnaires to evaluate the prevalence of post-COVID-19 syndrome were administered at 1 year. A total of 181 patients were admitted to the ICU during the study period. They were middle-aged (median [IQR] of 61 [52;67]) and male (66.9%), with a median ICU stay of 9 (5-24.2) days. 20% died in the hospital, and 39 were not able to be included. A cohort of 105 patients initiated the follow-up. At 1 year, 32.2% persisted with respiratory alterations and needed to continue the follow-up. Ten percent still had moderate/severe lung diffusion (DLCO) involvement (<60%), and 53.7% had a fibrotic pattern on CT. Moreover, patients had a mean (SD) number of symptoms of 5.7 ± 4.6, and 61.3% met the criteria for post-COVID syndrome at 1 year. During the follow-up, 46 patients were discharged, and 16 were transferred to other consultations. Other conditions, such as emphysema (21.6%), COPD (8.2%), severe neurocognitive disorders (4.1%), and lung cancer (1%) were identified. A high use of health care resources is observed in the first year. In conclusion, one-third of critically ill COVID-19 patients need to continue follow-up beyond 1 year, due to abnormalities on DLCO, chest CT, or persistent symptoms.

6.
Biomed Pharmacother ; 154: 113617, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2003885

ABSTRACT

BACKGROUND: Up to 80% of patients surviving acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 infection present persistent anomalies in pulmonary function after hospital discharge. There is a limited understanding of the mechanistic pathways linked to post-acute pulmonary sequelae. AIM: To identify the molecular underpinnings associated with severe lung diffusion involvement in survivors of SARS-CoV-2-induced ARDS. METHODS: Survivors attended to a complete pulmonary evaluation 3 months after hospital discharge. RNA sequencing (RNA-seq) was performed using Illumina technology in whole-blood samples from 50 patients with moderate to severe diffusion impairment (DLCO<60%) and age- and sex-matched individuals with mild-normal lung function (DLCO≥60%). A transcriptomic signature for optimal classification was constructed using random forest. Transcriptomic data were analyzed for biological pathway enrichment, cellular deconvolution, cell/tissue-specific gene expression and candidate drugs. RESULTS: RNA-seq identified 1357 differentially expressed transcripts. A model composed of 14 mRNAs allowed the optimal discrimination of survivors with severe diffusion impairment (AUC=0.979). Hallmarks of lung sequelae involved cell death signaling, cytoskeleton reorganization, cell growth and differentiation and the immune response. Resting natural killer (NK) cells were the most important immune cell subtype for the prediction of severe diffusion impairment. Components of the signature correlated with neutrophil, lymphocyte and monocyte counts. A variable expression profile of the transcripts was observed in lung cell subtypes and bodily tissues. One upregulated gene, TUBB4A, constitutes a target for FDA-approved drugs. CONCLUSIONS: This work defines the transcriptional programme associated with post-acute pulmonary sequelae and provides novel insights for targeted interventions and biomarker development.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , COVID-19/genetics , Humans , Lung , Respiratory Distress Syndrome/genetics , SARS-CoV-2 , Survivors , Tubulin
7.
Front Immunol ; 13: 942443, 2022.
Article in English | MEDLINE | ID: covidwho-1993790

ABSTRACT

Introduction: Bronchial aspirates (BAS) obtained during invasive mechanical ventilation (IMV) constitutes a useful tool for molecular phenotyping and decision making. Aim: To identify the proteomic determinants associated with disease pathogenesis, all-cause mortality and respiratory sequelae in BAS samples from critically ill patients with SARS-CoV-2-induced ARDS. Methods: Multicenter study including 74 critically ill patients with COVID-19 and non-COVID-19 ARDS. BAS were obtained by bronchoaspiration after IMV initiation. Three hundred sixty-four proteins were quantified using proximity extension assay (PEA) technology. Random forest models were used to assess predictor importance. Results: After adjusting for confounding factors, CST5, NADK, SRPK2 and TGF-α were differentially detected in COVID-19 and non-COVID-19 patients. In random forest models for COVID-19, CST5, DPP7, NADK, KYAT1 and TYMP showed the highest variable importance. In COVID-19 patients, reduced levels of ENTPD2 and PTN were observed in nonsurvivors of ICU stay, even after adjustment. AGR2, NQO2, IL-1α, OSM and TRAIL showed the strongest associations with in-ICU mortality and were used to construct a protein-based prediction model. Kaplan-Meier curves revealed a clear separation in mortality risk between subgroups of PTN, ENTPD2 and the prediction model. Cox regression models supported these findings. In survivors, the levels of FCRL1, NTF4 and THOP1 in BAS samples obtained during the ICU stay correlated with lung function (i.e., DLCO levels) 3 months after hospital discharge. Similarly, Flt3L and THOP1 levels were correlated with radiological features (i.e., TSS). These proteins are expressed in immune and nonimmune lung cells. Poor host response to viral infectivity and an inappropriate reparative mechanism seem to be linked with the pathogenesis of the disease and fatal outcomes, respectively. Conclusion: BAS proteomics identified novel factors associated with the pathology of SARS-CoV-2-induced ARDS and its adverse outcomes. BAS-based protein testing emerges as a novel tool for risk assessment in the ICU.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , Critical Illness , Humans , Mucoproteins , Oncogene Proteins , Protein Serine-Threonine Kinases , Proteomics , Respiratory Distress Syndrome/etiology , SARS-CoV-2
8.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1970476

ABSTRACT

The long-term clinical management and evolution of a cohort of critical COVID-19 survivors have not been described in detail. We report a prospective observational study of COVID-19 patients admitted to the ICU between March and August 2020. The follow-up in a post-COVID consultation comprised symptoms, pulmonary function tests, the 6-minute walking test (6MWT), and chest computed tomography (CT). Additionally, questionnaires to evaluate the prevalence of post-COVID-19 syndrome were administered at 1 year. A total of 181 patients were admitted to the ICU during the study period. They were middle-aged (median [IQR] of 61 [52;67]) and male (66.9%), with a median ICU stay of 9 (5–24.2) days. 20% died in the hospital, and 39 were not able to be included. A cohort of 105 patients initiated the follow-up. At 1 year, 32.2% persisted with respiratory alterations and needed to continue the follow-up. Ten percent still had moderate/severe lung diffusion (DLCO) involvement (<60%), and 53.7% had a fibrotic pattern on CT. Moreover, patients had a mean (SD) number of symptoms of 5.7 ± 4.6, and 61.3% met the criteria for post-COVID syndrome at 1 year. During the follow-up, 46 patients were discharged, and 16 were transferred to other consultations. Other conditions, such as emphysema (21.6%), COPD (8.2%), severe neurocognitive disorders (4.1%), and lung cancer (1%) were identified. A high use of health care resources is observed in the first year. In conclusion, one-third of critically ill COVID-19 patients need to continue follow-up beyond 1 year, due to abnormalities on DLCO, chest CT, or persistent symptoms.

9.
Lancet Reg Health Eur ; 18: 100422, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867458

ABSTRACT

Background: The clinical heterogeneity of COVID-19 suggests the existence of different phenotypes with prognostic implications. We aimed to analyze comorbidity patterns in critically ill COVID-19 patients and assess their impact on in-hospital outcomes, response to treatment and sequelae. Methods: Multicenter prospective/retrospective observational study in intensive care units of 55 Spanish hospitals. 5866 PCR-confirmed COVID-19 patients had comorbidities recorded at hospital admission; clinical and biological parameters, in-hospital procedures and complications throughout the stay; and, clinical complications, persistent symptoms and sequelae at 3 and 6 months. Findings: Latent class analysis identified 3 phenotypes using training and test subcohorts: low-morbidity (n=3385; 58%), younger and with few comorbidities; high-morbidity (n=2074; 35%), with high comorbid burden; and renal-morbidity (n=407; 7%), with chronic kidney disease (CKD), high comorbidity burden and the worst oxygenation profile. Renal-morbidity and high-morbidity had more in-hospital complications and higher mortality risk than low-morbidity (adjusted HR (95% CI): 1.57 (1.34-1.84) and 1.16 (1.05-1.28), respectively). Corticosteroids, but not tocilizumab, were associated with lower mortality risk (HR (95% CI) 0.76 (0.63-0.93)), especially in renal-morbidity and high-morbidity. Renal-morbidity and high-morbidity showed the worst lung function throughout the follow-up, with renal-morbidity having the highest risk of infectious complications (6%), emergency visits (29%) or hospital readmissions (14%) at 6 months (p<0.01). Interpretation: Comorbidity-based phenotypes were identified and associated with different expression of in-hospital complications, mortality, treatment response, and sequelae, with CKD playing a major role. This could help clinicians in day-to-day decision making including the management of post-discharge COVID-19 sequelae. Funding: ISCIII, UNESPA, CIBERES, FEDER, ESF.

10.
Emerg Microbes Infect ; 11(1): 1537-1549, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1860764

ABSTRACT

There is a limited understanding of the pathophysiology of postacute pulmonary sequelae in severe COVID-19. The aim of current study was to define the circulating microRNA (miRNA) profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS. The study included patients who developed ARDS secondary to SARS-CoV-2 infection (n = 167) and a group of infected patients who did not develop ARDS (n = 33). Patients were evaluated 3 months after hospital discharge. The follow-up included a complete pulmonary evaluation and chest computed tomography. Plasma miRNA profiling was performed using RT-qPCR. Random forest was used to construct miRNA signatures associated with lung diffusing capacity for carbon monoxide (DLCO) and total severity score (TSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted. DLCO < 80% predicted was observed in 81.8% of the patients. TSS showed a median [P25;P75] of 5 [2;8]. The miRNA model associated with DLCO comprised miR-17-5p, miR-27a-3p, miR-126-3p, miR-146a-5p and miR-495-3p. Concerning radiologic features, a miRNA signature composed by miR-9-5p, miR-21-5p, miR-24-3p and miR-221-3p correlated with TSS values. These associations were not observed in the non-ARDS group. KEGG pathway and GO enrichment analyses provided evidence of molecular mechanisms related not only to profibrotic or anti-inflammatory states but also to cell death, immune response, hypoxia, vascularization, coagulation and viral infection. In conclusion, diffusing capacity and radiological features in survivors from SARS-CoV-2-induced ARDS are associated with specific miRNA profiles. These findings provide novel insights into the possible molecular pathways underlying the pathogenesis of pulmonary sequelae.Trial registration: ClinicalTrials.gov identifier: NCT04457505..Trial registration: ISRCTN.org identifier: ISRCTN16865246..


Subject(s)
COVID-19 , Circulating MicroRNA , Respiratory Distress Syndrome , COVID-19/complications , Circulating MicroRNA/genetics , Humans , Lung , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Survivors
12.
Crit Care Med ; 50(6): 945-954, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1722615

ABSTRACT

OBJECTIVES: To evaluate the sleep and circadian rest-activity pattern of critical COVID-19 survivors 3 months after hospital discharge. DESIGN: Observational, prospective study. SETTING: Single-center study. PATIENTS: One hundred seventy-two consecutive COVID-19 survivors admitted to the ICU with acute respiratory distress syndrome. INTERVENTIONS: Seven days of actigraphy for sleep and circadian rest-activity pattern assessment; validated questionnaires; respiratory tests at the 3-month follow-up. MEASUREMENTS AND MAIN RESULTS: The cohort included 172 patients, mostly males (67.4%) with a median (25th-75th percentile) age of 61.0 years (52.8-67.0 yr). The median number of days at the ICU was 11.0 (6.00-24.0), and 51.7% of the patients received invasive mechanical ventilation (IMV). According to the Pittsburgh Sleep Quality Index (PSQI), 60.5% presented poor sleep quality 3 months after hospital discharge, which was further confirmed by actigraphy. Female sex was associated with an increased score in the PSQI (p < 0.05) and IMV during ICU stay was able to predict a higher fragmentation of the rest-activity rhythm at the 3-month follow-up (p < 0.001). Furthermore, compromised mental health measured by the Hospital Anxiety and Depression Scale was associated with poor sleep quality (p < 0.001). CONCLUSIONS: Our findings highlight the importance of considering sleep and circadian health after hospital discharge. Within this context, IMV during the ICU stay could aid in predicting an increased fragmentation of the rest-activity rhythm at the 3-month follow-up. Furthermore, compromised mental health could be a marker for sleep disruption at the post-COVID period.


Subject(s)
COVID-19 , Patient Discharge , Female , Hospitals , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies , Sleep , Survivors
13.
Front Med (Lausanne) ; 8: 756517, 2021.
Article in English | MEDLINE | ID: covidwho-1703379

ABSTRACT

BACKGROUND: The pathophysiology of COVID-19-related critical illness is not completely understood. Here, we analyzed the microRNA (miRNA) profile of bronchial aspirate (BAS) samples from COVID-19 and non-COVID-19 patients admitted to the ICU to identify prognostic biomarkers of fatal outcomes and to define molecular pathways involved in the disease and adverse events. METHODS: Two patient populations were included (n = 89): (i) a study population composed of critically ill COVID-19 and non-COVID-19 patients; (ii) a prospective study cohort composed of COVID-19 survivors and non-survivors among patients assisted by invasive mechanical ventilation (IMV). BAS samples were obtained by bronchoaspiration during the ICU stay. The miRNA profile was analyzed using RT-qPCR. Detailed biomarker and bioinformatics analyses were performed. RESULTS: The deregulation in five miRNA ratios (miR-122-5p/miR-199a-5p, miR-125a-5p/miR-133a-3p, miR-155-5p/miR-486-5p, miR-214-3p/miR-222-3p, and miR-221-3p/miR-27a-3p) was observed when COVID-19 and non-COVID-19 patients were compared. In addition, five miRNA ratios segregated between ICU survivors and nonsurvivors (miR-1-3p/miR-124-3p, miR-125b-5p/miR-34a-5p, miR-126-3p/miR-16-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). Through multivariable analysis, we constructed a miRNA ratio-based prediction model for ICU mortality that optimized the best combination of miRNA ratios (miR-125b-5p/miR-34a-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). The model (AUC 0.85) and the miR-199a-5p/miR-9-5p ratio (AUC 0.80) showed an optimal discrimination value and outperformed the best clinical predictor for ICU mortality (days from first symptoms to IMV initiation, AUC 0.73). The survival analysis confirmed the usefulness of the miRNA ratio model and the individual ratio to identify patients at high risk of fatal outcomes following IMV initiation. Functional enrichment analyses identified pathological mechanisms implicated in fibrosis, coagulation, viral infections, immune responses and inflammation. CONCLUSIONS: COVID-19 induces a specific miRNA signature in BAS from critically ill patients. In addition, specific miRNA ratios in BAS samples hold individual and collective potential to improve risk-based patient stratification following IMV initiation in COVID-19-related critical illness. The biological role of the host miRNA profiles may allow a better understanding of the different pathological axes of the disease.

14.
PLoS One ; 16(10): e0258918, 2021.
Article in English | MEDLINE | ID: covidwho-1496517

ABSTRACT

The objective was to describe the clinical characteristics and outcomes of hospitalized COVID-19 patients during the two different epidemic periods. Prospective, observational, cohort study of hospitalized COVID-19. A total of 421 consecutive patients were included, 188 during the first period (March-May 2020) and 233 in the second wave (July-December 2020). Clinical, epidemiological, prognostic and therapeutic data were compared. Patients of the first outbreak were older and more comorbid, presented worse PaO2/FiO2 ratio and an increased creatinine and D-dimer levels at hospital admission. The hospital stay was shorter (14.5[8;29] vs 8[6;14] days, p<0.001), ICU admissions (31.9% vs 13.3%, p<0.001) and the number of patients who required mechanical ventilation (OR = 0.12 [0.05-10.26]; p<0.001) were reduced. There were no significant differences in hospital and 30-day after discharge mortality (adjusted HR = 1.56; p = 0.1056) or hospital readmissions. New treatments and clinical strategies appear to improve hospital length, ICU admissions and the requirement for mechanical ventilation. However, we did not observe differences in mortality or readmissions.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , COVID-19/therapy , Adult , Aged , Aged, 80 and over , Cohort Studies , Epidemics/statistics & numerical data , Female , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Hospitalization/trends , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Prognosis , Prospective Studies , Respiration, Artificial/mortality , Risk Factors , SARS-CoV-2/pathogenicity , Spain/epidemiology , Treatment Outcome
16.
Chest ; 160(1): 187-198, 2021 07.
Article in English | MEDLINE | ID: covidwho-1290546

ABSTRACT

BACKGROUND: More than 20% of hospitalized patients with COVID-19 demonstrate ARDS requiring ICU admission. The long-term respiratory sequelae in such patients remain unclear. RESEARCH QUESTION: What are the major long-term pulmonary sequelae in critical patients who survive COVID-19? STUDY DESIGN AND METHODS: Consecutive patients with COVID-19 requiring ICU admission were recruited and evaluated 3 months after hospitalization discharge. The follow-up comprised symptom and quality of life, anxiety and depression questionnaires, pulmonary function tests, exercise test (6-min walking test [6MWT]), and chest CT imaging. RESULTS: One hundred twenty-five patients admitted to the ICU with ARDS secondary to COVID-19 were recruited between March and June 2020. At the 3-month follow-up, 62 patients were available for pulmonary evaluation. The most frequent symptoms were dyspnea (46.7%) and cough (34.4%). Eighty-two percent of patients showed a lung diffusing capacity of less than 80%. The median distance in the 6MWT was 400 m (interquartile range, 362-440 m). CT scans showed abnormal results in 70.2% of patients, demonstrating reticular lesions in 49.1% and fibrotic patterns in 21.1%. Patients with more severe alterations on chest CT scan showed worse pulmonary function and presented more degrees of desaturation in the 6MWT. Factors associated with the severity of lung damage on chest CT scan were age and length of invasive mechanical ventilation during the ICU stay. INTERPRETATION: Three months after hospital discharge, pulmonary structural abnormalities and functional impairment are highly prevalent in patients with ARDS secondary to COVID-19 who required an ICU stay. Pulmonary evaluation should be considered for all critical COVID-19 survivors 3 months after discharge.


Subject(s)
COVID-19 , Long Term Adverse Effects , Lung/diagnostic imaging , Quality of Life , Respiratory Function Tests/methods , Survivors , Tomography, X-Ray Computed/methods , Aftercare/methods , Aftercare/statistics & numerical data , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Female , Humans , Intensive Care Units/statistics & numerical data , Long Term Adverse Effects/diagnosis , Long Term Adverse Effects/epidemiology , Long Term Adverse Effects/etiology , Long Term Adverse Effects/psychology , Lung/physiopathology , Male , Middle Aged , Outcome Assessment, Health Care , Patient Discharge/statistics & numerical data , Prevalence , SARS-CoV-2 , Spain/epidemiology , Survivors/psychology , Survivors/statistics & numerical data , Walk Test/methods , Walk Test/statistics & numerical data
17.
Transl Res ; 236: 147-159, 2021 10.
Article in English | MEDLINE | ID: covidwho-1243239

ABSTRACT

We aimed to examine the circulating microRNA (miRNA) profile of hospitalized COVID-19 patients and evaluate its potential as a source of biomarkers for the management of the disease. This was an observational and multicenter study that included 84 patients with a positive nasopharyngeal swab Polymerase chain reaction (PCR) test for SARS-CoV-2 recruited during the first pandemic wave in Spain (March-June 2020). Patients were stratified according to disease severity: hospitalized patients admitted to the clinical wards without requiring critical care and patients admitted to the intensive care unit (ICU). An additional study was completed including ICU nonsurvivors and survivors. Plasma miRNA profiling was performed using reverse transcription polymerase quantitative chain reaction (RT-qPCR). Predictive models were constructed using least absolute shrinkage and selection operator (LASSO) regression. Ten circulating miRNAs were dysregulated in ICU patients compared to ward patients. LASSO analysis identified a signature of three miRNAs (miR-148a-3p, miR-451a and miR-486-5p) that distinguishes between ICU and ward patients [AUC (95% CI) = 0.89 (0.81-0.97)]. Among critically ill patients, six miRNAs were downregulated between nonsurvivors and survivors. A signature based on two miRNAs (miR-192-5p and miR-323a-3p) differentiated ICU nonsurvivors from survivors [AUC (95% CI) = 0.80 (0.64-0.96)]. The discriminatory potential of the signature was higher than that observed for laboratory parameters such as leukocyte counts, C-reactive protein (CRP) or D-dimer [maximum AUC (95% CI) for these variables = 0.73 (0.55-0.92)]. miRNA levels were correlated with the duration of ICU stay. Specific circulating miRNA profiles are associated with the severity of COVID-19. Plasma miRNA signatures emerge as a novel tool to assist in the early prediction of vital status deterioration among ICU patients.


Subject(s)
COVID-19/blood , COVID-19/genetics , Circulating MicroRNA/blood , Hospitalization , Severity of Illness Index , Aged , Biomarkers/blood , COVID-19/virology , Critical Illness , Female , Humans , Intensive Care Units , Male , SARS-CoV-2/physiology
18.
RNA Biol ; 18(5): 688-695, 2021 05.
Article in English | MEDLINE | ID: covidwho-1061120

ABSTRACT

The COVID-19 emergency pandemic resulting from infection with SARS-CoV-2 represents a major threat to public health worldwide. There is an urgent clinical demand for easily accessible tools to address weaknesses and gaps in the management of COVID-19 patients. In this context, transcriptomic profiling of liquid biopsies, especially microRNAs (miRNAs), has recently emerged as a robust source of potential clinical indicators for medical decision-making. Nevertheless, the analysis of the circulating miRNA signature and its translation to clinical practice requires strict control of a wide array of methodological details. In this review, we indicate the main methodological aspects that should be addressed when evaluating the circulating miRNA profiles in COVID-19 patients, from preanalytical and analytical variables to the experimental design, impact of confounding, analysis of the data and interpretation of the findings, among others. Additionally, we provide practice points to ensure the rigour and reproducibility of miRNA-based biomarker investigations of this condition.Abbreviations: ACE: angiotensin-converting enzyme; ARDS: acute respiratory distress syndrome; COVID-19: coronavirus disease 2019; ERDN: early Detection Research Network; LMWH: low molecular weight heparin; miRNA: microRNA; ncRNA: noncoding RNA; SARS-CoV-2: severe acute respiratory syndrome coronavirus-2; SOP: standard operating procedure.


Subject(s)
COVID-19/blood , COVID-19/genetics , Gene Expression Profiling/methods , MicroRNAs/blood , MicroRNAs/genetics , SARS-CoV-2 , COVID-19/virology , Gene Expression Profiling/standards , Genetic Markers , Humans , Liquid Biopsy/methods , Liquid Biopsy/standards , MicroRNAs/isolation & purification , Pandemics , Virus Inactivation
20.
Sleep Breath ; 25(2): 1055-1061, 2021 06.
Article in English | MEDLINE | ID: covidwho-807628

ABSTRACT

PURPOSE: The COVID-19 outbreak witnessed in the first months of 2020 has led to unprecedented changes in society's lifestyles. In the current study, we aimed to investigate the effect of this unexpected context on sleep. METHODS: During the COVID-19 outbreak, we performed an online survey with individuals formerly recruited for validation of the Spanish version of the sleep questionnaire Satisfaction, Alertness, Timing, Efficiency, and Duration (SATED). In the current survey, we asked the participants to complete the previously answered questionnaires including the Pittsburgh Sleep Quality Index (PSQI), a modified version of the Epworth Sleepiness Scale (ESS), and the SATED questionnaire. We also assessed the mood by the Profile of Mood States (POMS) questionnaire. RESULTS: The 71 participants were mostly women (75%) with a mean (± SD) age of 40.7 ± 11.9 years. Comparing the previous PSQI score to that during the COVID-19 outbreak, we observed worsening sleep quality (5.45 ± 3.14 to 6.18 ± 3.03 points, p = 0.035). In parallel, there was an increase in the negative mood (p = 0.002). Accordingly, the decrease in sleep quality was substantially correlated with negative mood (p < 0.001). There were no differences in the ESS or SATED. CONCLUSIONS: The COVID-19 outbreak-associated events correlate with decreased sleep quality in association with an increase in negative mood. Considering the importance of sleep for a healthy life, and in particular for immune function, efforts should be made to improve awareness on this matter and to offer psychological assistance to affected individuals.


Subject(s)
COVID-19/complications , COVID-19/psychology , Health Status , Sleep Stages/physiology , Sleep Wake Disorders/etiology , Sleep Wake Disorders/psychology , Adult , Anxiety/psychology , Depression/psychology , Female , Humans , Male , Middle Aged , Quality of Life , Sleep Apnea, Obstructive/etiology , Sleep Apnea, Obstructive/psychology , Sleep Wake Disorders/diagnosis , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL